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EVOLUTION OF FLOW STRUCTURE IN IMPINGING
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SUMMARY

Direct numerical simulations of the ¯ow ®eld of an element of banks of impinging axial and radial slot jets for
different Reynolds number are presented. Simulations have been obtained from the solution of the Navier±Stokes
equations. Results show for the chosen geometry a transition from steady to periodic to chaotic ¯ow with
increasing Reynolds number. The transition Reynolds number is nearly 50% smaller for the radial jet than for the
axial jet. Period doubling has been observed for both cases, but only the radial jet shows periodic windows of
chaos. # 1997 John Wiley & Sons, Ltd.
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INTRODUCTION

Rows of impinging jets issuing out of rectangular slots or round tubes are often used in industry for

heating, cooling or drying of product surfaces. Often these jets are turbulent, but, in some applications

(e.g. electronic cooling) they can be laminar. Laminar jets discharging out of a round or a rectangular

feed tube eventually become turbulent1 when the Reynolds number is larger than 30. The distance at

which the transition takes place depends on Re. Laminar jets impinging on a plate can undergo

transition depending on the Reynolds number and the distance between the jet and the plate before

impingement. Relaminarization may occur close to the impingement point and a second transition

may occur as the ¯ow develops as a wall jet after impingement. This can be seen from the two peaks

of the measured local mass transfer rate on the impingement plate.2

Numerical computations of ¯ow ®elds of laminar3 and turbulent4 jets have been reported.

However, the ¯ow ®eld of an impinging jet may contain laminar, transitional and turbulent zones. A

direct numerical simulation for such a ¯ow will be a meaningful tool to study the structure.

In a previous paper we investigated the evolution of the ¯ow structure of impinging axial and

radial jets issuing out of a round feed tube.5 The radial jet issues from the side of the round tube and
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reattaches on the impingement plate in the form of an umbrella. The computational results of

Laschefski et al5 showed that both types of jets could be steady at low Reynolds number. As Re was

increased, the jets became oscillatory. The frequency and amplitude of oscillations changed with

increasing Re. The oscillation started with one dominant frequency and a moderate amplitude. As Re

was increased further, more frequencies appeared and the amplitudes at some of the frequencies

became larger. As Re was increased still further, aperiodic ¯ow resulted. A fast Fourier analysis of the

time series of a velocity component at a chosen point failed to show any dominant frequency for the

aperiodic ¯ow. At even higher Re the numerical solution failed to converge. This change from steady

to aperiodic solution described the transition from laminar to turbulent ¯ow. Computational

experiments showed that the failure to converge could be postponed to higher Reynolds numbers by

the use of ®ner grids. Although both types of jets gave qualitatively the same ¯ow, the radial jet

appeared to be less stable since it produced the transition to periodic and aperiodic ¯ows at lower

Reynolds numbers than the axial jet.

In the previous computations5 the ¯ow was modelled as axisymmetric in order to reduce

computational effort. This naturally puts a constraint on the actual physics of transition. The purpose

of the present work is a similar study of the ¯ow structure evolution but of three-dimensional

impinging jets. We will consider a bank of slot jets issuing out of rectangular feed tubes or nozzles

either axially or `radially', i.e. from the sides of the feed tubes. Only an element consisting of one jet

of the bank will be handled in the computational domain. Some preliminary results have already been

presented.6 Here we present in detail the evolution of the ¯ow structure.

The transition to chaos as a function of the Reynolds number in an unforced ¯ow has been

numerically investigated by Pulliam and Vastano,7 who computed the compressible ¯ow around a

two-dimensional aerofoil at a Mach number of 0�2 and an angle of attack of 20�. They found that the

system undergoes a period-doubling bifurcation as the Reynolds number is increased from 800 to

1600 with periodic windows. The present work follows closely the work of Pulliam and Vastano.7

However, the ¯ow here is three-dimensional. To the authors' knowledge, no experimental or

computational study of the transition to chaos of an impinging jet ¯ow has ever been reported. Hence

a comparison of the present results with other works could not be performed.

BASIC EQUATIONS AND METHOD OF SOLUTION

Computational Domain

Figures 1(a) and 1(b) show three-dimensional schematic diagrams of the banks of axially and

radially impinging slot jets. The corresponding front views are also shown. In Figure 1(a), jets issue

from rectangular parallel slots of width B. The distance (pitch) between the axes of two neighbouring

parallel slots is LT the length of each slot is 2l and the height of the slot exit above the impinging plate

is h. The jets are semi-enclosed and the height of the enclosing plate above the impingement plate is

H. For the axially discharging jet (Figure 1(a)) the ¯uid after hitting the impingement plate moves

sideways only a small distance, as it is restrained by the neighbouring jets. The ¯uid moves out in

directions normal to the paper (y-axis in Figure 1(a)). In contrast with the axial jet (Figure 1(a)), for

the `radial' or knife jet of Figure 1(b) the jet ¯uid discharges from the sides. The height h in this case

is the distance between the impingement plate and the midpoint of the sideways slot. The height of

the slot is B=2, so the total ¯ow cross-section of the two radial slots is equal to the ¯ow cross-section

of the axial jet. The computational domains consisting of an element are depicted by broken lines in

Figures 1(a) and 1(b)).
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Basic Equations

The jet ¯uid is assumed to be incompressible with constant properties and the jets are discharging

in an ambience of the same ¯uid. The ¯ow ®eld is described by the Navier±Stokes equations, which

in non-dimensional Cartesian index form for non-steady three-dimensional ¯ow read as

@Vi

@xi

� 0; �1�

@Vj

@t
� @�ViVj�

@xi

� ÿ @p
@xi

� 1

Re
H2Vj: �2�

Figure 1. Schematic diagrams of rectangular (a) axial and (b) radial jets together with front views. The three-dimensional
computational domains are shown by broken lines
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Here lengths have been non-dimensionalized with 2B and velocity components with V?, the average

exit velocity of the slots. The pressure is non-dimensionalized by dividing by RV2
?, where R is the

density. The Reynolds number is de®ned as Re�V? 2B=n, where n is the kinematic viscosity.

Boundary Conditions

No-slip boundary conditions on solid walls have been used. Symmetry conditions have been used

on symmetry planes; see Figures 1(a) and 1(b).

At the inlet, i.e. at the exit from the slot, either a uniform or a fully developed form of velocity

pro®le can be assumed. We have assumed uniform ¯ow (top-hat pro®le). The boundary condition at

the exit plane is a problem, because the ambient ¯uid will be entrained in the computational domain

across the upper part of the exit plane, whereas across the lower part the jet will discharge in the

ambient. At this plane the ®rst derivatives of velocity components are set equal to zero and the

pressure is taken to be constant.5

Computational Scheme

The basic equations have been solved by a pressure-based ®nite volume code FIVO developed by

the present authors. This code uses SIMPLE C9 pressure correction. Collocated grids with momentum

interpolation are used.8

Computations have been performed with 71,400 (34642650) and 53,376 (66682698)

equidistant grid points, corresponding to grid sizes of 0�0625 and 0�03125 respectively. A detailed

study of the grid size dependence of the present results has not been performed with still ®ner grids,

because it would require a prohibitively large computer capacity. Pulliam and Vastano7 did do a

detailed study of grid dependence, but they employed a two-dimensional geometry. We performed a

grid dependence study with the present code for a non-steady ¯ow in a two-dimensional channel with

a square cylinder in it. Results with a grid of Dx� 0�05, Dy� 0�04 (2026102) show that the Strouhal

number of the vortex street differs from the grid-independent Strouhal number by less 4%.5 Although

the code can calculate time-implicit difference formulae, time-explicit discretization has been used in

the present work. The time step has been calculated from the CFL condition.5 A reduction of the time

step by 50% from the allowable step size shows less than 3% difference in Strouhal number for the

square cylinder in the channel case. The details of the computational scheme, the difference formula

using the deferred correction technique for the convective ¯uxes and the implementation of the

constant pressure boundary condition can be found in Reference 5. The code has been validated by

calculating a plane jet ¯ow and comparing the numerical results with analytical results.5

RESULTS AND DISCUSSION

The ¯ow structure depends on the geometrical parameters (H, B, h, l and LT) and the Reynolds

number Re. In this work we study the effect of Re and keep the geometrical parameters ®xed at

h=B� 2, H=B� 6, l=B� 5 and LT=B� 8. These values are typical for industrial jets.2

The computations were started at low Re (normally 150). The computed ¯ow ®eld was steady. The

¯uid coming out of the slot hits the plate and then turns around an axis normal to the plane of the

paper in Figure 1(a) (y-axis), as it cannot move in the lateral direction (x-direction) owing to the

neighbouring jets. Thus the mainstream forms a longitudinal vortex as it comes out of the

computational domain in the y-direction; see Reference 10 for ®gures of the velocity ®eld and surface

streamlines.

Then Re was increased stepwise with a step size of ®ve. It was found that the axial jet remained

steady at Re� 335, but at Re� 338 the ¯ow bifurcates to a time-periodic solution. For this case the

1086 H. LASCHEFSKI, T. CZIESLA AND N. K. MITRA

INT. J. NUMER. METH. FLUIDS, VOL. 25: 1083±1103 (1997) # 1997 John Wiley & Sons, Ltd.



axis of the longitudinal vortex oscillates sideways periodically. The bifurcation Re of 338 was

obtained by noting that Re� 340 gave a periodic solution. Re was increased by a step size of one

from 335 and the previous solution was used as the starting solution. Since we solved non-steady

equations, the computational results signify that for Re< 338 the ¯ow becomes time-asymptotically

steady, whereas for Re� 338 it evolves to a limit cycle or periodic attractor. This was recognized by

Fourier-analysing the time series of the u-velocity component at a point in the middle of the ¯ow

®eld. Figure 2 shows for Re� 338 the time series of u, the time delay reconstruction7 and the Fourier-

analysed power density against the Strouhal number S� f 2B=V?, where f is the frequency.

We notice that the dominant S is approximately 0�0078 and the other two weak frequencies are

represented by S� 0�015 and 0�022. It is possible that at some smaller Re a periodic ¯ow with one

dominant frequency resulted. This could not be veri®ed unless a much ®ner grid could be used. If Re

is now raised further, the frequencies become larger, although the bandwidths of individual

frequencies become narrower. Figures 3±5 show the time series, delay reconstruction and frequency

spectrum at Re� 360, 400 and 412 respectively. The dominant Strouhal number has changed from

Figure 2. Velocity component u(t) of axial jet for Re� 338: (a) time series; (b) time phase diagram; (c) Fourier analysis
showing power density against Strouhal number S
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0�02 to 0�04. At Re� 360 the dominant Strouhal numbers are 0�025, 0�05 and 0�075. At Re� 412

there is only one dominant frequency with a Strouhal number of 0�045.

At Re� 414 a dramatic change in the ¯ow ®eld appears; see Figure 6. First we notice a period

doubling, with Strouhal number 0�024. The ¯ow structure tends to be chaotic. This tendency

continues at Re� 420 (Figure 7) and Re� 435 (Figure 8). For the latter Re the ¯ow has become

turbulent.

Figure 9 shows the dominant Strouhal number against Re. Table I presents the values of S. In the

chaotic regime (Re 5 414) the dominant frequency is the one with the largest power density. The

dominant S increases with Re steadily until a sudden period doubling appears. This manifests itself as

a discontinuous jump condition and signi®es chaos.

For the radial jets we carried out similar investigations. Steady ¯ow was obtained at Re� 208. At

Re� 210 the ¯ow was periodic with a dominant Strouhal number of 0�047; see Figure 10. At

Re� 212 the picture remains similar, except that the Strouhal number has become 0�058; see Figure

11. As Re increase further to 215, period doubling is observed; see Figure 12. The dominant

Figure 3. Velocity component u(t) of axial jet for Re� 360: (a) time series; (b) time phase diagram; (c) fourier analysis showing
power density against Strouhal number S
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frequency is 0�029 and Figure 12 shows a chaotic ¯ow. The time-delay phase diagram did not close

properly. With a further increase in Re to 220 the ¯ow again became periodic (Figure 13) with a

dominant S of 0�028. At Re� 230 (Figure 14), although a dominant frequency still exists, the ¯ow has

become closer to chaotic; see the phase diagram in Figure 14. At Re� 240 the ¯ow has again become

periodic; Figure 15. At Re� 245 the onset of chaos can again be noticed; see Figure 16. At larger Re

(e.g. 248, 250) the ¯ow remains chaotic with one dominant frequency; see Figure 17 for Re� 250. At

Re� 275 the dominant frequency disappears and the ¯ow should treated as fully turbulent; see Figure

18. see Figure 19 again shows the dominant Strouhal number against the Reynolds number. Table II

presents the exact values of S. We notice the ®rst period-doubling discontinuity at Re� 212. The ¯ow

evolves to a ®nal chaotic state through two intermediate periodic windows. For the axial jet such

periodic windows of chaos have not been observed.

Figure 4. Velocity component u(t) of axial jet for Re� 400: (a) time series; (b) time phase diagram; (c) Fourier analysis
showing power density against Strouhal number S
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CONCLUDING REMARKS

Numerical computations of three-dimensional non-steady ¯ow ®elds of impinging axial and radial

jets showing a sequence of ¯ow states leading from steady to periodic to chaotic ¯ow via a period-

doubling mechanism with increasing Reynolds number are reported for the ®rst time. For radial jet

simulations, periodic windows leading to chaos have been observed. The present study follows in the

footsteps of Pulliam and Vastano7 and shows qualitatively similar results. However, because of the

three-dimensional computation in the present case, the in¯uence of mesh re®nement has not been as

Figure 5. Velocity component u(t) of axial jet for Re� 412: (a) time series; (b) time phase diagram; (c) Fourier analysis
showing power density against Strouhal number S

Table I. Dominant Strouhal number against Reynolds number for axial jet

Re 338 360 380 390 400 405 408 410 412 414 416 420 425

S 0�008 0�025 0�031 0�034 0�038 0�041 0�042 0�044 0�045 0�048 0�024 0�024 0�024
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Figure 6. Velocity component u(t) of axial jet for Re� 414: (a) time series; (b) time phase diagram; (c) Fourier analysis
showing power density against Strouhal number S

Table II. Dominant Strouhal number against
Reynolds number for radial jet

Re S

210 0�047 periodic
212 0�058 periodic period
215 0�029 chaotic doubling
220 0�028 periodic
230 0�031 chaotic
240 0.028 periodic
245 0�029 chaotic
250 0�035 chaotic
270 0�039 chaotic
275 Ð turbulent
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rigorously studied as in Reference 7. It must also be pointed out that the computed Re for transition to

chaos (or turbulence) is dependent on numerical errors. However, the results show the correct trend.

Hence they may encourage further research along this new avenue of non-linear stability theory.
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APPENDIX: LIST OF SYMBOLS

B slot width

f frequency

h height of slot exit above impingement surface

H height of enclosing plate above impingement surface

l half-length of slot

Figure 7. Velocity component u(t) of axial jet for Re� 420: (a) time series; (b) time phase diagram; (c) Fourier analysis
showing power density against Strouhal number S
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Figure 8. Velocity component u(t) of axial jet for Re� 435: (a) time series; (b) time phase diagram; (c) Fourier analysis
showing power density against Strouhal number S

Figure 9. Dependence of dominant Strouhal number of axial jet on the Reynolds number
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LT slot pitch

p pressure

Re Reynolds number (�V? 2B=n)

S Strouhal number (� f 2B=V?)

t time

Vj jth velocity component

V? average velocity at slot exit

xi ith cartesian co-ordinate

Greek letters

n kinematic viscosity

r density

Figure 10. Velocity component u(t) of radial jet for Re� 210: (a) time series; (b) time phase diagram; (c) Fourier analysis
showing power density against Strouhal number S
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Figure 11. Velocity component u(t) of radial jet for Re� 212: (a) time series; (b) time phase diagram; (c) Fourier analysis
showing power density against Strouhal number S
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Figure 12. Velocity component u(t) of radial jet for Re� 215: (a) time series; (b) time phase diagram; (c) Fourier analysis
showing power density against Strouhal number S
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Figure 13. Velocity component u(t) of radial jet for Re� 220: (a) time series; (b) time phase diagram; (c) Fourier analysis
showing power density against Strouhal number S
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Figure 14. Velocity component u(t) of radial jet for Re� 230: (a) time series; (b) time phase diagram; (c) Fourier analysis
showing power density against Strouhal number S
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Figure 15. Velocity component u(t) of radial jet for Re� 240: (a) time series; (b) time phase diagram; (c) Fourier analysis
showing power density against Strouhal number S
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Figure 16. Velocity component u(t) of radial jet for Re� 245: (a) time series; (b) time phase diagram; (c) Fourier analysis
showing power density against Strouhal number S
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Figure 17. Velocity component u(t) of radial jet for Re� 250: (a) time series; (b) time phase diagram; (c) Fourier analysis
showing power density against Strouhal number S
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Figure 18. Velocity component u(t) of radial jet for Re� 275: (a) time series; (b) time phase diagram; (c) Fourier analysis
showing power density against Strouhal number S

Figure 19. Dependence of dominant Strouhal number of radial jet on Reynolds number
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